Word Translation Prediction for Morphologically Rich Languages with Bilingual Neural Networks

Summary

Choosing the correct surface form requires
linguistic features of source and target context:

- in phrase-based SMT, access to source
context depends on phrase segmentation

» linguistic features depend on available
annotation tools and manual feature
engineering

Our approach enables:

» accurate prediction of target translation
stem and suffix given fixed amount of
context

- automatic learning of relevant features with
neural network architecture

This results In:

- significantly higher accuracies than
maximume-likelihood baseline

* better ranking of translation options, small
but significant BLEU gains in English-to-
Russian
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Motivation

[KOHCTUTYLUMOHHOCTL| [MHOMaHa 3akoH] [obcy)xpoanacb] [Ha 3acepaHuun]
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[the constitutionality of the] [ind‘iana law] [was discussed] [dur'ing the meeting]

Wrong case translation of law due to the rare word —) Need a model to improve
Indiana. The language model does not help in this case morphological prediction

Task: Predict target word translation given the source sentence and alignment link
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Translation prediction results
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Bilingual neural networks (BNN) prediction accuracy
compared to a context-independent maximum

likelihood baseline.

Top-1 baseline
Top-3 baseline

Top-1 BNN
Top-3 BNN
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Approach: Bilingual Neural Network (BNN)

Factorize word translation probability into stem and suffix probabilities p(tj |qu;) — p((fj |Csi )p(,uj ‘Csf,; ; O'j)

Stem prediction BNN

Suffix prediction BNN
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Input: fixed-size source context window

Input: fixed-size source context window + target stem

Conditional probability normalized over the set of translation 5% log P (t|cs) — E%SQ (t‘CS) — Z Py (t/‘CS)%SQ (t,, CS)

candidates instead of the whole output vocabulary
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SMT results

Compute BNN score for each phrase pair, similarly to lexical weighting:

MLE BNN
p(elf) stem suffix

iIndiana law / nHgnaHa 3akoH 06 06 0.1
indiana law / nHgnaHa 3akoHa 01 06 0.7
iIndiana law / viugnaHa sakoHos 0.1 0.6 0.1

Effect of our BNN models on English-to-Russian
translation quality (BLEU%) :

SMT system wmti2 (dev) | wmt13 (test)
Baseline 24.7 18.9
+ stem/suff. BNN 25.1 19.3*
Base+suff.LM 24.5 19.2
+ word. BNN 24.5 19.2
+ stem/suff. BNN 24.7 19.6*

> Penn(tles,) if Hai}| >0

PpNn-p(8,t,a) = ol ;&

otherwise

Target word coverage analysis of the English-to-Russian
SMT system before and after adding the morphological

BNN models:
Base | +BNN
reference/MT-search-space [top-1] 57.6% | 59.0%
reference/MT-search-space [top-3] 70.7% | 70.9%
reference/MT-search-space [top-30] 86.0% | 85.0%
reference/MT-output 50.0% | 50.7%
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