Word Translation Prediction for Morphologically Rich Languages with Bilingual Neural Networks

Summary

Choosing the correct surface form requires linguistic features of source and target context:

- in phrase-based SMT, access to source context depends on phrase segmentation
- linguistic features depend on available annotation tools and manual feature engineering

Our approach enables:

- accurate prediction of target translation stem and suffix given fixed amount of context
- automatic learning of relevant features with neural network architecture

This results in:

- significantly higher accuracies than maximum-likelihood baseline
- better ranking of translation options, small but significant BLEU gains in English-to-Russian

Approach: Bilingual Neural Network (BNN)

Factorize word translation probability into stem and suffix probabilities $p(t_j|\mathbf{c}_{s_i}) = p(\sigma_j|\mathbf{c}_{s_i})p(\mu_j|\mathbf{c}_{s_i},\sigma_j)$

Stem prediction BNN

Input: fixed-size source context window

Conditional probability normalized over the set of translation candidates instead of the whole output vocabulary

Suffix prediction BNN

Input: fixed-size source context window + target stem

 $\frac{\partial}{\partial \theta} \log P_{\theta}(t|\mathbf{c}_s) = \frac{\partial}{\partial \theta} s_{\theta}(t|\mathbf{c}_s) - \sum_{t' \in T_s} P_{\theta}(t'|\mathbf{c}_s) \frac{\partial}{\partial \theta} s_{\theta}(t',\mathbf{c}_s)$

Christof Monz

SMT results

Compute BNN score for each phrase pair, similarly to lexical weighting:

$$P_{\text{BNN-p}}(\tilde{s}, \tilde{t}, a) = \prod_{i=1}^{|\tilde{s}|} \begin{cases} \frac{1}{|\{a_i\}|} \sum_{j \in \{a_i\}} P_{\text{BNN}}(\tilde{s}, \tilde{t}, a) \\ P_{\text{mle}}(\text{NULL}|s_i) \end{cases}$$

MLE p(elf) indiana law / индиана закон 0.6 indiana law / индиана закона 0.1

indiana law / индиана законов 0.1

Effect of our BNN models on English-to-Russian translation quality (BLEU%) :

SMT system	wmt12 (dev)	wmt13 (test)
Baseline	24.7	18.9
+ stem/suff. BNN	25.1	19.3 *
Base+suff.LM	24.5	19.2
+ word. BNN	24.5	19.2
+ stem/suff. BNN	24.7	19.6 *

Target word coverage analysis of the English-to-Russian SMT system before and after adding the morphological BNN models:

	Dase	
reference/MT-search-space [top-1]	57.6%	59.0%
reference/MT-search-space [top-3]	70.7%	70.9%
reference/MT-search-space [top-30]	86.0%	85.0%
reference/MT-output	50.0%	50.7%

 $(t_j | \mathbf{c}_{s_i})$ if $| \{ a_i \} | > 0$

otherwise

BNN	
stem	suffix
0.6	0.1
0.6	0.7
0.6	0.1
	BN stem 0.6 0.6 0.6

