Summary

Choosing the correct surface form requires linguistic features of source and target context:
- in phrase-based SMT, access to source context depends on phrase segmentation
- linguistic features depend on available annotation tools and manual feature engineering

Our approach enables:
- accurate prediction of target translation stem and suffix given fixed amount of context
- automatic learning of relevant features with neural network architecture

This results in:
- significantly higher accuracies than maximum-likelihood baseline
- better ranking of translation options, small but significant BLEU gains in English-to-Russian translation quality (BLEU%)

Approach: Bilingual Neural Network (BNN)

Factorize word translation probability into stem and suffix probabilities:

\[p(t_j | c_s) = p(\sigma_j | c_s) p(\mu_j | c_s, \sigma_j) \]

Task: Predict target word translation given the source sentence and alignment link

Previous approaches rely on linguistic annotations such as POS, dependency relations,...

Motivation

Choosing the correct surface form requires linguistic features of source and target context:
- in phrase-based SMT, access to source context depends on phrase segmentation
- linguistic features depend on available annotation tools and manual feature engineering

Our approach enables:
- accurate prediction of target translation stem and suffix given fixed amount of context
- automatic learning of relevant features with neural network architecture

This results in:
- significantly higher accuracies than maximum-likelihood baseline
- better ranking of translation options, small but significant BLEU gains in English-to-Russian translation quality (BLEU%)

Translation prediction results

Bilingual neural networks (BNN) prediction accuracy compared to a context-independent maximum likelihood baseline.

SMT results

Compute BNN score for each phrase pair, similarly to lexical weighting:

\[P_{\text{BNN}}(\delta, t, a) = \prod_{i=1}^{i=m} \left(\frac{1}{1 + \sum_{j \neq \delta} P_{\text{BNN}}(t_j | c_s)} \right) \]

Effect of our BNN models on English-to-Russian translation quality (BLEU%):

<table>
<thead>
<tr>
<th>SMT system</th>
<th>wmt12 (dev)</th>
<th>wmt13 (test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline + BNN</td>
<td>25.1</td>
<td>19.3*</td>
</tr>
<tr>
<td>+ stem/suff. BNN</td>
<td>24.5</td>
<td>19.2</td>
</tr>
<tr>
<td>+ word. BNN</td>
<td>24.5</td>
<td>19.2</td>
</tr>
<tr>
<td>+ stem/suff. BNN</td>
<td>24.7</td>
<td>19.6*</td>
</tr>
</tbody>
</table>

Target word coverage analysis of the English-to-Russian SMT system before and after adding the morphological BNN models:

<table>
<thead>
<tr>
<th>Target word coverage analysis</th>
<th>Base + BNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference/MT-search-space (top-1)</td>
<td>57.6%</td>
</tr>
<tr>
<td>reference/MT-search-space (top-3)</td>
<td>70.7%</td>
</tr>
<tr>
<td>reference/MT-search-space (top-10)</td>
<td>66.0%</td>
</tr>
<tr>
<td>reference/MT-output</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

This work: use local context and lean relevant features automatically.